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Summary—For & certain class of multivariate random processes,
called wide-sense Markov processes, the minimum mean-square error
linear prediction and estimation problem is solved in terms of ex-
plicit formulas. These continue to apply when only irregular sam-
ples of the process are available, or the optimum filter is con-
strained to have finite memory. A complete characterization of
these processes is obtained; a process is shown to be wide-sense
Markov if and only if its covarilance matrix satisfies a specified
functional equation. The output of & system described by a (pos-
sibly time-varying) matrix-vector equation forced by multiveriate
white noise is shown to be wide-sense Markov. Prediction and esti-
mation optima are computed for the output of such a system.
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Increased interest has recently been focused on linear multivariate sys-
tems characterized by an input-output relationship
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INTRODUCTION
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n \t
yj(t> = Z j ij(t:T)xk(T)dT J=1,2,...,n , (l)

where the inputs are x (t), xx(t),...,x,(t) and the outputs are similarly

indexed y's. The input components xj(t) are often second-order processes,
vwhich may be nonstationary.

If the system is to be designed as an optimum predictor in the sense of
minimizing the statistical expectation (indicated by prefixing E) given by
E Z ([x; (tﬁa)-yJ(t)] }, the n® weighting functions Wy ij are given as the
solutlon of n? linear simultaneous integral equations of the time-varying
Wiener-Hopf type. The complexity of this task is such that general solu-
tions have not been obtained, nor is there much hope of securing solutions
I in the future. There are, however, a number of special assumptions under
which solutions are known to exist. Although many situations of practical
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importance satisfy these assumptions, the optimization procedures required are
so difficult as to discourage actual computation [1] [2] [3].

Perhaps the outstanding feature of the theory to be presented in this
"papef‘is its ease of application. Solutions to prediction problems are pre-
sented explicitly in closed form. The technique is easily extended to the
optimum (minimum mean-square) estimator for functionals on x(t) provided by
unrealizable operations of certain types. The procedure may be applied when
only (possibly irregularly spaced) samples of arbitrary width are available.
A further extension to a generalized mean-square error criterion is immediate.

While our theory is applicable only to a certain class of (time-varying,
possibly complex) random processes, this class includes many problems of
engineering interest. Moreover, we derive a criterion whereby this class of
processes may be easily identified. Included, for example, is the x(t) whose
components solve the sets of simultaneous differential equations

xj(t) = Z agk(t)xg(t) + Z gy (tIm(t) (2)
k k

where the nk(t) are uncorrelated white-noise processes (compare [3]).

I. PRELIMINARIES

A multivariate second-order process x(t) consists of n component proc-
esses X, (t),x,(t),...,x,(t), each of which is itself a (complex) process of
finite mean square. It will be convenient throughout to regard x(t) as the
matrix

[ %1 (t) 0 0.e0.0

Xg(t) 0 0....0
(3)

xn(t) 0 0....0

and x*(t) as the complex conjugate transpose of x(t).

The expectation of & matrix (denoted by prefixing E) is formed of the
expectation of its elements. The same convention applies to other linear
operatlons on a matrix; for example, the derivative of A = [alJ(t)] is
A= [alJ(t

~3
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The correlation of x(s) and x(t) is designated P(s,t), and is given by

P(s,t) = E[x(s)x*(t)], (4)

which is simply the matrix whose ij element is E[xi(s)xj(t)]. The inner prod-
uct of x(s) and x(t) is then defined as the trace of its correlation, viz.

(x(s),x(t)) = 7[P(s,t)] = E: Elxi(s)xi(t)] . (5)
i

The inner product is also defined for random variables obtained from linear
matrix operations on x(t). Thus, if y = A(s)x(s) and z = B(t)x(t), the inner
product

(v,2) = (A(s)x(s),B(t)x(t)) = v(E[A(s)x(s)x*(t)B*(t)]}

T{A(s)P(s,t)B*(t) }.

The inner product leads also to a norm; thus the norm ||x(t)] of x(t) is
given according to the definition

I 1® = (3(8),5(8) = j{: By, (+)]°.
1

The norm of z(t) above is then seen to be Hz(t)“iT[B(t)P(t,t)B*(t)].

Consider now a Hilbert space H; it shall consist of all matrices
A(t)x(t) for each t, providing the norm remains finite, of all finite linear
combinations L A(tk)x(tk), and of all limits of such finite combinations

k

whose norm remains finite.l If it is required to estimate z(t)eH [z(%)

= x(t+x) for prediction],and if y(t)eH is the actual output, the error is
given by z(t)-y(t). Now the jth error component is zj(t)-yj(t), and a
logical definition of the mean-square error is the sum of the mean-squares
of these components. Therefore, the mean-square error K is

T o= Jlz(t) - v (8)

1The reader unfamiliar with Hilbert spaces is advised to consult [4].
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so that the optimization problem is equivalent to minimizing an H norm.

Since z(t) is specified in the problem statement, the optimization pro-
cedure involves finding that "admissible" y(t) which minimizes (8). To be
precise, y(t) is admissible if y(t)eM, where M is a subspace. A subspace
is defined as follows: let T be a specified subset of the real line, and
consider all x(t) for which teT. All such x(t)eM, together with all finite
sums E A(t,)x(ty ). Finally, all limits in norm of these sums belong to M

also. If t represents the time of the present, T = (s|s< t} is the set of
times over which x(t) is available for observation or as an input to a fil-
ter; it is the "subspace of the past."

Two random variables, say y and z, are said to be orthogonal, ylz, if
(y,z) = 0. That orthogonality is a concept central to the optimization prob-
lem is indicated by

Theorem 1: A necessary and sufficient condition that yeM minimize (8) over
all elements of M is that z-y is orthogonal to every element in M, i.e., that

z-yIM any yeM.

Such a yeM exists and 1s unique.
Proof: See [4], Sections 6 and 7.
The requirement (9) is equivalent to T(E[(z-y)x*(t)A*(t)]} =0 for

arbitrary A(t) and all teT.© In particular, the arbitrary nature of A(t)
implies that (9) is satisfied if and only if the matrix

E[(z-y)x*(t)] = 0, all teT. (10)

Suppose now that it is desired to optimize with respect to a generalized
mean-square error criterion, that is, to minimize

o= B(z-p))® = E }Z l ZE: b iyl 2=y |2 (11)
J k

over all yeM, with B an arbitrary matrix having entries bjk. It may be
shown (see [5], Theorem 1) that the same yeM which minimizes (8) also mini-
mizes the generalized mean-square error, (11). However, the minimizing y is
not unique unless B is nonsingular.

2Use has been made of the fact that [A(t)x(t)]* = x*(t)A¥(t).
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II. MULTIVARTATE WIDE-SENSE MARKOV PROCESSES

The linear minimum mean-square error estimator, sometimes called a wide-
sense conditional expectation, will be denoted by £. For the minimum mean-
square estimate of zeH, based on x(t;),x(tz),...,x(tp.1), one may write

n-1

Blz|x(t2) ,x(t2) ..., x(ty1) ] = zAkx(tk) )
1

(12)

n-1
' 2
with the matrices Ay so chosen that E[|z - 2 Akx(tk)l ] is minimized. A

1

special case is obtained by takingt, <t, < .... <t and z = x(t,). Then
the process x(t) is said to be wide-sense Markov if any such set of t's
yields A, =0 for k=1,2,..,n-2; this is equivalent to

Blx(tp) [x(t) ,x(£2) 5000, x(tno1) ] = Elx(tg) |%(tn-1) ] (13)

for all t; < tp < .... < t,. Moreover, it may be verified that if x(t) has
a continuous correlation P(s,t), and A is a subset of the real line such that

sup s = s¥* < ¢,
s€A

ﬁ[x(t)|x(s),seA] = ﬁ[x(t)|x(s*)]

is an equivalent definition for the wide-sense Markov property.
We remark that ﬁ is the linear minimum-mean-square-error estimate of
x(t), given the random process over a subset A of the real line. In general,

this estimate is extremely difficult to compute. However, the property
(1L) sets this estimate equal to ﬁ[x(t)lx(s*)], which is simply

E(x(t) [x(s%)] = R(t,s%) x(s¥). (15)

According to (10), (15) is true if R(t,s*) satisfies
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E{[x(t) -R(t,s*)x(s*) ]x*(s*)} = P(t,s*)-R(t,s*)P(s*,8%) = O, (16)

Suppose first that P(s*,s*) is invertible. Then it is easily verified that
-1

R(t,8%) = P(t,s*) [P(s*,s%)] (17)

satisfies (16).

If P(s*,s%) is singula.r,5 (17) mekes no sense, but it is still possible
to find an R(t,s*) which satisfies (15). For simplicity of notation we omit
the asterisk in this discussion and speak of the determination of R(t,s).
Let Ay,A5,...,A be the eigenvalues of P(s,s), and take D as the diagonal
matrix whose entries are djj = MBjij (note that s is suppressed in this
discussion). Since P(s,s) is Hermitian, n orthogonal eigenvectors
{c135C4ny-++5Cin) correspond to the eigenvalues; we may take these to be
normalized by % Icijl2 = 1. The unitary matrix C is then formed from the

elements cjj.

Finally, let E be the diagonal matrix with ejy = N 1if A # 0, and eyy
=1 if Ay = 0. Then

R(t,s) = B(t,s)[c*E"*c], (18)

which, it may be verified, satisfies (16) as shown in [k]. It is also clear
that if P(s,s) is invertible, E* = D', so that C*E-'C = [P(s,s)]-* and
(18) coincides with (17).

If x(t) is wide-sense Markov, the multivariate prediction problem is al-
ready solved by (14) and (15). For a prediction interval @, the best (mini-

mum-mean-square) linear prediction of x(t+2) based on the present and past of
x(t) is

Bix(t+a) |x(s),s < t] = Blx(t+0) |x(t)] = R(t+o,t)x(t). (19)

2A covariance matrix P(t,t) is singular if and only if the components (t)
of the vector x(t) are dependent in the sense that there exists a set of (com-
plex) scalars & such that EIE a, % (t)|% = 0 and not all a, =0. This is

proved by noting that the determinant of the matrix P(t,t) is a Gram deter-
minant.
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While the wide-sense Markov property is usually not directly verifiable,
there is a simple criterion which identifies such processes. This test is a
result of
Theorem 2: x(t) is wide-sense Markov if and only if, for all s <t < u,

R(u,s) R(u,t)R(t,s) .

= (20)
Proof: 1In (13), meke the identification t, = u, t .1 =t, and t;_» =s. By
an argument identical with the one leading to (16), we have
P(u,s) - R(u,t)P(t,s) = O . (21)

When (21) is post-multiplied by C*E~2C and its terms rearranged, (20) re-
sults.

To prove the "if" part of the theorem, we show first that

ﬁ[X(tn)Ix(tl),x(ta):---;x(tn-l)] = R(tp,tn-1)x(tn-1). (22)

Indeed, (22) is equivalent to P(t ,t, )-R(t ,t, _1)P(t, _;,%) =0,
k=1,2,...,n-1, from (10). But orthogonality is implied by

P(tn;tk) - R(tn:tn-]_)P(tn-l,tk) = 0, (25)

which follows from (20) upon teking t, = s, t, 1 = t, and £, = u.

Equation (22) having been shown, we need only make the further remark that

Blx(ty) |x(tp.1)] = R(tn,tn-1)x(tn-1) (24)

irrespective of the wide-sense Markov property. Together, (22) and (24)
imply (13).

As a specialization of the foregoing, we discuss wide-sense Markov proc-
esses which are also stationary in the wide sense. These have found some ap-
plications in the physics literature, where the emphasis is on gaussian proc-
esses (which are then also stationary and Markovian in the usual sense) [6].
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We shall define a multivariate wide-sense stationary process as being charac-
terized by the relation

P(s,t) = P(s-t), (25)

with the additional proviso that P(0) is nonsingular. From its general defi-
nition, R will be seen to assume the form

R(t) = P(t)[p(0)])"* . (26)

When a process is both wide-sense Markov and stationary, R satisfies both
(26) and (20), so that

R(s+t) = R(s)R(t) . (27)

In fact, the form can now be specified precisely. We have

Theorem 3: Let x(t) be wide-sense stationary and wide-sense Markov. If
R(t) is continuous at t = 0 (from the right),

R(t) = e°° t>0 , (28)

where C is a constant matrix all of whose eigenvalues have negative real
parts. Conversely, if R(t) satisfies (28), x(t) is wide-sense Markov.

*
Remark: For t <0, R(t) = eC ltl.

Proof: That (27) implies (28) follows for matrices just as it does for
functions; the uniqueness of (28) follows from the right continuity of R(t)
at the origin. For a complete proof, including a verification that the
eigenvalues of C have negative real parts, see [5], Theorem 3. To prove the

converse part of the theorem, one simply notes that the R(t) given by (28)
satisfies (27), so that x(t) is indeed wide-sense Markov.

In making an optimum estimate of quantities such as

e}

z(t) = f W(t,s)x(s)ds (29)

-

“It is known that any solutions of (27) not continuous everywhere must be
unbounded in every interval.

-
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with x(t) wide-sense Markov, additional difficulties appear. If, however,‘ﬁ
and integration can be interchanged,

oo

Blz(t) |x(t)eM] = f W(t,8) Elx(s) |x(s)eMlds (30)

~=00

so that it may be possible to calculate the optimum estimate quite easily.
The following theorem gives conditions under which (30) is valid:

Theorem 4: The interchange of £ and integration, (30), is valid if, for
each t,

oo}

f W(t,s)x(s)llds < « . (31)

-00

The proof of Theorem 4 requires a working knowledge of measure theory
and functional analysis, and appears in [5].

Using (50), it is possible to obtain an explicit expression for the
optimum estimate of z(t), based on the entire past of x(t). The integral on
the right side of (30) is split into the intervals -« to t and t to «; in
the first interval, B[x(s) |x(T),= < T < t] = x(s), and in the second, (14)
applies. Then

0

N .
ﬁ[z(t)]x(T),T <t] = \/\ W(t,s)x(s)ds + b/\W(t,s)R(s,t)dt x(t). (32)
-0 t

Optimum finite memory filters are also of interest. In terms of the set A
introduced earlier [see (14)], a finite memory filter with memory T .corre-
sponds to an interval A running from t-T to t. To operate with finite memory
filters, it is necessary to use the following property of wide-sense Markov
processes: if inf s = sy, > t, then

s€A ‘

A A
E(x(t) |x(s),seA]l = E[x(t)|x(s,)]. (33)
Thus, the best estimate of x(t) for any time more remote than the length of

the filter memory is based on x(s,), where s, is the earliest time in the
filter memory.
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Thet (33) is true is a consequence of

Theorem 5: If x(t) is wide-sense Markov,

R(s,u) = R(s,t)R(t,u) s<t<u. (34)

Moreover, x(t) is wide-sense Markov if and only if x(-t) is wide-sense Markov.

Proof: For convenience, we write [P(t,t)]-l even if P(t,t) has no inverse;
in the latter case, [P(t,t)] > is to be interpreted as C*E~1C (where C and E

are understood to depend on the parameter t). Suppose x(t) to be wide-sense
Markov. Then (20) gives

R¥(u,s) = R*(u,t)R*(t,s) s<t<u. (35)

But P*(s,t) = P(t,s), so that R*(s,t) = [P(t,t)]-lP(t,s). Now apply this re-
sult to (35), premultiply both sides by P(s,s), and postmultiply by
(P(u,u)]™*. The final outcome of these operations is (34).

To prove the second assertion of the theorem, let %(t) = x(-t), and de-
note the normalized covariance matrix of x(t) by R(s,t). It is then easily
verified that R(s,t) = R(-s,-t). Now choose -u < -t < -s, yielding

R(-u,-s) = R(-u,-t)R(-t,-s) (36)

from (3&); If £36) is rewritten in terms of R, we see that
R(u,s) = R(u,t)R(t,s) with s <t < u (which follows from -u < -t < =-8). Thus
*%(t) is wide-sense Markov.

The "if" part of the theorem follows immediately. For, if ¥%(t) is wide-
sense Markov, so is (by what we have just proved) %(-t) = x(t).

With the aid of Theorem 5, it is easy to verify (33). Let -A be the set
containing -t if and only if teA. We thus have, taking (-s)* = sup(-s)<-t,
-se-A

E[X( -t) |x(-s),(-s)e-A) = E[X(-t) |x((-s)%) ] . (37)

-t
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With the change from X to x, (37) becomes

Elx(t) |x(s),seA] = E[x(t)|x(-(-s)*) 1. (38)

We complete the calculation by showing that -(-s)*% = g* > t. Indeed,

-(-8)* = -sup(-s) >t, and -sup(-s) = Infs = sx.
seA seh seA

III. APPLICATIONS

With the theoretical background that has been developed, it is possible
to solve prediction and estimation problems not amenable to the usual tech-
niques. Solutions to several apparently difficult problems will be exhibited

in closed form without necessarily exhausting the power of wide-sense Markov
theory.

Consider again the problem of estimating a z(t) defined by (29), W(t,s)
representing some desired operation on x(t). It is assumed that x(t) is
available over a finite segment of the past, so that the optimum finite
memory filter is sought. To compute B(z(t)|x(T),t-T <7<t £ and the
integration are interchanged, and the integral is split into the three inter-
vals -o to t-T, t-T to t, and t to ». Equation (33) may be applied to the
first integral, and (14) to the third. In the second integral, advantage is
taken of the fact that ﬁ[x(s)lx(T),t-T <71 <t] =x(s) whenever t-T <s < t.
The result of the computation is therefore

t-T
Blz(t) |x(1),t-T < 7 < t] = W(t,s)R(s,t-T)as| x(t-T)
e (39)
[ it
+ W(t,s)x(s)as + [: W(t,s)R(s,t)d%] x(t).
“-T %

. The finite memory filter which operates on x(t) to yield
E[z(t)|x(7),t-T < T < t] can be described by a weighting function G(t,s) such
that

t

ﬁ[z(t)lx(T),t-T <7< t] = ‘L\TG(t’S)X(S)dS . o)
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It is convenient to write G(t,s) in terms of the ®-function and the unit step
function A(t); the latter is zero for negative argument and unity for positive
argument. Both step and S-functions are regarded as scalar multipliers. The
equation for G(t,s) reads:

alt,s) = f W(t wR(u,t-T)du|8(t-T-s) + W(t,s) [N(s-t-T)-A(s-t) ]

| -0
(k1)

+ ./\ W(t,u)R(u,t)du| &(t-s)
Lt

If W(t,s) is zero for s < t, it is called wholly unrealizable. Then only
theAfinal term of (39) or (1) remains, and (independently of T) the estimate
of Blz(t)|x(T), t-T < T < t] is obtained by applying n® time-varying multi-
pliers and n summers to x(t). If, in additon, W(t,s) is time invariant,

i.e., W(t,s) = W(t-s), and x(t) is wide-sense stationary (as well as wide-
sense Markov), the n? multipliers have constant gains. 2 1In particular, the

jth component of Elz(t) |x(1), t-T <7< t]is % gjkxk(t)’ where g is the Jk

compornent of the constant matrix

(o]
G = ./ﬁ W(u)e~c*udu . (L2)

-00

A particular example of a wholly nonrealizable W is that associated with
prediction over an interval . There, W(s,t) = 85(t+x-s)I. Substituting this
value of W in (41) (only the last term need be considered) gives a result
identical with the earlier computation (19).

The general results (39) and (41) lend themselves also to other appli-
cations. Assume a sampled data system, in which only one sample is avail-
able to the filter memory. If the leading edge of the sample is at time
Sy, and the trailing edge at time s*, (41) becomes

Sy -
G(t,s) = f W(t,u) R(u,sx) du|8(sy,-s) + W(t,s) [A(s-5x) -A\(s-5%) ]
- - (L3)

—
[)P W(t,u)R(u,s*)ds| &(s*=-s)

DApart from variations in the signs of the multiplier gains, n operational

amplifiers with adjustable input resistors suffice to mechanize the optimum
system.

(34
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Special cases are readily deduced from (43). It is clear, for instance, that
only the trailing edge of a sample (the trailing edge of the last sample if
there are more than one) is employed if W(t,s) is wholly unrealizable; this
trailing edge is passed through a set of time-varying amplifiers and summed.
Another specialization results if the sample 1s instantaneous (zero width).
Then sy = s*, the second term of (43) disappears, and there remains

0

a(t,s) = n/\ W(t,u)R(u,s*)du| &(s-s¥) , (bk)

-00

which is to say,
o

ﬁ[z(t)lx(s*)] = Jf W(t,u)R(u,s*)du| x(s*) . (45)

=00

So far, there has been no indication when wide-sense Markov processes
might be encountered. In fact, such processes do constitute the output of
at least one important class of linear systems. Considered will be systems
described by linear time-varying differentiasl equations with white-noise
forcing.6 For these systems, R(s,t) will be computed explicitly, thus solv-
ing the prediction problem completely for outputs of these systems.

For a first-order equation,

X + f(t)x = h(t)n(t) x(0) =0, (46)

in which all quantities are real scalars (matrices with only one entry), and
n(t) is a (real) random process with covariance E[n(s)n(t)] = 8(s-t).

Evidently, x(t) is the output of a time-varying system whose input con-
sists of white noise modulated by h(t). For instance, h(t) becomes a pulse
train if the system receives its input through a (possibly non-periodic)
sampling switch. More generally, h(t) reflects the variation in noise
strength with time.

If one takes

t
H(s,t) = exp +U f(u)dul} , (L7)
S

6Com.pare [3].
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the solution of (46) becomes

t t
x(t) = fH(t,u)h(u)n(u)du = H(t,O)fH(O,u)h(u)n(u)du (48)
(o]

e}

since H(s,u) = H(s,t)H(t,u). It is now easy to compute R(s,t)
=P(s,t)[P(t,t)]-2. In this case, the inverse becomes the reciprocal, so
that we have

R(s,t) = Ex(&)x(®)] (49)

Elx(t) 2]

An easy computation yilelds

wmin(s,t) 2
E[x(s)x(t)] = H(s,O)H(t,O)j £ (0,u)h2 (u)du , (50)
0
which we rewrite as
.min(s,t)
Efx(s)x(t)] = H(t,0) j H(s,u)H(0,u)h(u)du . (51)

(e}

From (51) and (49) we deduce that

S

_/‘ H(s,u)H(0,u)h” (u)du
R(s,t) = —3 (52)

j 1(t,u)H(0,u)h3(u)du
O

whenever s < t. The expression for R(s,t) with s > t is even simpler. We
now use (50), and note that the integral portion of this equation remains
unchanged if we set s = t. Therefore, the integral term cancels when we
compute R(s,t). Using the relation H(u,v) = 1/H(v,u), we have for our result

R(s,t) = H(s,t) s>t . (53)

The Markov property is now easily verified by substituting (53) into one side
of (20) and using the identity H(s,u) = H(s,t)H(t,u). Verification may also
be accomplished through use of (52), if desired.

LY ]
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It is of course possible that the denominator of (52) is zero; this
occurs only when h(u) = O in the interval zero to t. In such an event, we
take R(s,t) = O, which also makes the estimate of any z(t), based on x(T),
0 <r<t, be zero. This is to be expected, since x(t) = O over the same
interval.

Since R(s,t) may be directly computed from (52) or (53), any of the
formulas of this section may be applied. For instance, the optimum predic-
tion over interval O is

Blx(aa) |x(1),0 < T < t] = H(t4a,t)x(t), (54)

which shows that prediction may be accomplished by a time-varying multiplier.
When W(t,s) is wholly nonrealizable, other optimizations are comparably sim-
ple.

The above calculations may be extended to matrix differential equations,
which are written

x = A(t)x + M(t)n(t) - x(0) = 0, (55)

all symbols representing matrices, which may be complex. The "white noise" is
now characterized by E[n(s)n*(t)] = &(t-s)I, where I is the identity matrix.

The solutions to optimization problems involving the x(t) given by (55)
are formulated in terms of the fundamental matrix, X(t), which provides the
solution to

X = A(t)X, X(0) = 0. (56)

That a knowledge of'X(t) is required implies no loss in generality, since
X(t) is required even to compute P(s,t), or to solve (55) with non-stochastic
forcing.

The calculations are similar to those made for the first-order equation,
except that matrices fail to commute, and reciprocals of singular matrices
cannot be identified with inverses. It remains true, however, that there is
an H(t,s) such that

TFor a more complete discussion of the optimum estimator problem as applied

to (46), see [T].
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. o
x(t) = f H(t,u) M(u) n{u) du (57) .
o
with "
Hs,t) = X(s)[x(t)1",
a nonsingular matrix having the property H(s,t) = [H(t,s)]™t.
Proceeding as before,
min{s,t)
P(s,t) = Jf H(s,u)M(u) M*(u) B*(t,u)du . (58)

(o}

For ease of computation, it is sometimes advantageous to write (58) as

min(s,t)
P(s,t) = X(s) f [X(w) 17 M0 w) Me(w) [X*(w) 17 tau b x%( t) (59) .

o]

If the integral

t
v(t) = f [x(u)]'lm(u)M*(u)[x*(u)]‘ldu (60)
(o]

is invertible, we also have

[(P(t,t) 17% = [3+(t) 17 W) 174 x(e) 17% (61)
so that
R(s,t) = H(s,t) s>t (62) \'

and, for s < t,

R(s,8) = X(s)W(s) [W(£) 17 [x(t) 1" = X(s)V(s) [X(t)W(t)]"% . (63) ‘




- Z17

Either (62) or (63) may be used to verify that x(t) is wide-sense Markov.
This is easily accomplished by substitution of (62) or (63) into (20).

It may be shown (see [5]) that (60) is nonsingular if M(u) is nonsing-
ular in some neighborhood of the origin, so that a simple sufficiency condi-
tion checks the applicability of the above formulas. On the other hand, there
are some applications in which (60) is clearly singular. For instance, we
may choose M(u) to possessonly one nonzero element, corresponding to white

noise imposed on only one of the vector components. One such form of M(u)
leads to the scalar equation.

n
ax gty

an(t) —x + & _1(t) +co+ aj(t)x = n(t) ,
dt n dtn-l

which is, of course, covered by our theory.

The case of a singular V(t) again requires us to find eigenvalues and
eigenvectors. Since V(t) is Hermitian, we may define Cis» Dg, and Eg to
have the same meaning as in Section II, except that they apply to the matrix
V(t). It is then possible to show (see [5]) that

. R(s,t) = X(s)[CgDgEsiCsllX(t) 17t s>t . (6k)

The R(s,t) of this form also satisfies (20), so that x(t) is wide-sense

Markov in any case (see [5] for proof). If V(t) is nonsingular, (64)
reduces to (62).

Since the determination of R(s,t) shows x(t) to be wide-sense Markov,
substitution into any of the earlier optimization formulas is appropriate.
For an infinite memory filter, and/or a z(t) generated by a wholly unrealiz-
able weighting function, only the simple expression (62) appears in the
result. The prediction formula, for example, is precisely (54).
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